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ABSTRACT

One of the characteristics of Independent Verification

and Validation (IV&V) that help make it an effective

systems engineering technique is the fresh perspective
it brings to the software development effort. This

fresh perspective can be enhanced if the IV&V tasks
are organized to cut across the work breakdown

structure of the software development tasks. This
paper describes an IV&V technique that uses

functional flow descriptions as a basis for IV&V

analysis. The functional flows generally pass through
multiple software modules, where the module is the

basic unit of responsibility for the development team.
The use of functional flows as a basis for IV&V

analysis allows the IV&V team to have a different

perspective from that of the development team. This
method can also be used to determine the critical
areas of the software and to focus the IV&V effort

toward these critical areas. The method further

provides a framework for interaction for the IV&V

analysts who have responsibilities in different areas
of the software.

IV&V projects often seek to analyze the software

using methods, tools, and processes that are
complementary to but distinct from those used by the

developer. The complementary viewpoints utilized
by IV&V include efforts to determine conditions that

might not have been tested by the developing

organization, including boundary constraints, off-
nominal conditions, error paths, and user scenarios.

These viewpoints enable the IV&V team to have a
different perspective of the software from that of the

development team.

One method to provide a different perspective is to

organize the analysis effort so that an IV&V analysis
area involves soft--'are that cuts across the basic units

constructed by the developer. Since IV&V focuses

on critical system requirements, the cuts focus on the
software that performs functions that are critical to

the operation of the system. This experience report
describes how functional flows are used to provide a

structure for IV&V analysis. It describes the methods

used and the additional advantages gained by the
IV&V team through the use of functional flows.

KEY WORDS ISNSA ENVIRONMENT

functional flow, perspective, IV&V, nuclear safety,
software accreditation, software engineering, software

safety, validation, verification

INTRODUCTION

The objective of an IV&V effort is to develop an

independent assessment of the software quality and to
determine if the software satisfies critical systems

requirements 1°. In an effort to meet this objective,

This work is performed as part of the Independent

Software Nuclear Safety Analysis (ISNSA) of the
Tomahawk Weapon System (TWS). The TWS and

other weapon systems that are capable of using
nuclear weapons are developed in accordance with

the United States Department of Defense (DoD)
standards for nucl_ safety, Safety Studies and

Reviews of Nuclear Weapons, DoD Directive
3150.24. The Navy implements the DoD nuclear

safety requirements within the Tomahawk system
through the Tomahawk Nuclear Safety and

Certification Program, PDA- 14INST 8020.1A 7.

The work described in this paper was performed while both authors were employed by Logicon, Inc. The work was performed
under contract number N00019-90-C-0050. Support for writing the paper was provided by NASA under contract number
NCCW-0040.



ISNSAis partof this program, and is performed to
ensure the software does not cause or contribute to a

violation of nuclear safety standards.

The focus of ISNSA is nuclear safety, so the analysis

is not focused on general safety or on performance
issues. However, ISNSA uses many of the same

techniques and methods used by the software safety
community and by general IV&V 9. In addition,

ISNSA is the only activity within the TWS

development process that provides an independent
assessment of the software. ISNSA finds and

documents many problems related to general safety
and to performance as a collateral result of analyzing

the software for nuclear safety.

The Tomahawk Nuclear Safety and Certification

Program identifies a set of system actions that must

be controlled properly in order to ensure the weapon

system is in conformance with DoD nuclear safety
standards 7. These critical actions are implemented

and controlled within the system through some
combination of hardware, software, or administrative

components. The portions of the s)-stem that
implement and control the critical actions are termed
"critical factors."

The ISNSA team has the responsibility to identify the

software that is a part of any critical factor. The
software functions that are included in critical factors

are termed "critical functions", and this critical

software receives priority for analysis. A critical
factor may be implemented across multiple software

modules, tasks, and computers.

The system considered by the ISNSA team consists of

three major components: the Weapon Control System
(WCS), the Vertical Launch System (VLS), and the

missile. This report deals with ISNSA performed on

the TWS system and on the WCS subsystem for
several major versions. The overall TWS system

ISNSA deals with a high-level view of the system,
focusing on external interfaces and the interfaces
between the various hardware and software

components of the weapon system. The WCS
subsystem ISNSA goes to a more detailed level,

extending to the code implementation.

The WCS subsystem software is developed in
conformance to the Defense System Software

Development standard, DOD-STD-2167A _, and
consists of FORTRAN and Assembly code in a real-

time, interrupt-driven system. The software has a
basic hierarchical structure, with multiple tasks. Each

task issues a sequence of calls to subroutines and

functions, and executes on a separate thread. The

tasks communicate through messages and shared

memory locations, and have priority assignments that
determine scheduling for execution. The individual

tasks in the code often have a correspondence to
particular sections within the program specification
document.

The ISNSA team analyzing the WCS subsystem is

organized according to the structure of the software.
Each analyst is assigned particular sections of the

program specification, and is expected to follow that

area of the software through requirements, design,
implementation, and test phases of development. The

developing organization is also organized along this
same basic hierarchical structure.

FUNCTIONAL FLOWS

Functional flows are a means of expressing software

requirements, design or implementation in a diagram
form. A function flow is a block diagram that depicts

the relationships between the system components that
are required to accomplish a particular function,

including inputs, outputs, constraints, and control
flow. 6 The diagrams are used by analysts to search

for ambiguities, inconsistencies, incompleteness, and

areas of potential weakness.

The 1SNSA approach combines functional flow block

diagrams with the Tomahawk nuclear safety critical
factors. The ISNSA team prepares functional flow

diagrams that depict the flow of data and control in
the software necessary to perform each of the critical
actions 5. The resulting functional flows are termed

Critical Factor Flow Diagrams (CFFDs). The CFFDs

are designed to identify and analyze the system

elements and interdependencies of system elements
that are necessary to the realization of the critical

factor being diagrammed.

CFFDs are created at two levels: the TWS system

level and the WCS subsystem level. These two types
of CFFDs are constructed in formats created by the

ISNSA team. TWS system CFFDs are constructed in
a format most suitable for representing the

relationships between subsystem-level software and

hardware components. WCS subsystem CFFDs are
constructed in a format most suitable for representing
the relationships between WCS software components

and between WCS software components and software

and hardware components in other subsystems. The
WCS appears as one subsystem in the system CFFDs.

Functional Flows in IV&V 2



Notes within the WCS area of the system CFFDs
indicate corresponding sections of WCS subsystem

CFFDs. The critical factor being represented is used

in the naming convention for both TWS and WCS
CFFDs, so flows related to the same critical factor
can also be identified in this manner. However, the

portions of the WCS subsystem CFFDs that do not
involve elements from other subsystems do not

appear in system CFFDs. Also, while all critical
factors must be addressed at the system level, not all
critical factors involve the WCS subsystem.

Special symbol formats used in the system diagrams

include rectangles for digital messages across system
component interfaces and squares for hardware

devices and monitors. The subsystem CTFDs use

rectangles to represent interfaces to other subsystems
within the weapon system. Symbols used by both the

system and subsystem CFFI_ include AND gates and
OR gates, and diamonds for decision boxes that alter

the path to be taken for different data values. Lines in
both diagrams represent control flow, message flow,

or signal flow as appropriate. Figure 1 shows a

sample System CFFD, and Figures 2a-2d contain a
sample Subsystem CFFD, all taken from the ISNSA

work. Figure 3 indicates the meanings of the various
symbols used in the functional flows.

A brief description of the sample CFFDs is given
below, in order to provide a general understanding of

the flows being diagrammed. Many details, such as

the message information and values of the variables,

are not described since this paper addresses the
concept of the CFFDs rather than the particulars of

the TWS implementation.

The system level functional flows created by the
ISNSA team are generated from requirements and
interface control documents, while the subsystem
level CFFDs are based on source code

implementation. The symbols and formats are chosen

as appropriate for the level of detail and the
relationships within the respective functional flows.

These examples should not preclude the use of
functional flows at other levels of system

development, nor should they prescribe the use of

these symbols and formats for all functional flows.

System CFFDs

TWS system CFFDs depict the functional processing

of the critical factors by showing actions and

interactions of the various subsystems. The message
flows, device control and device status are shown in

diagrams, as well as the Boolean combination

of events necessary to cause actions. The system
CFFDs visually divide the flow of messages and

status data across distinct sections of the diagram.
Each section represents a subsystem or hardware

component, including WCS subsystem components,

launch system components and missile components.

Figure 1 depicts the flow for the processing to request
missile status information. The message originates in

the WCS subsystem, and is passed through two

subsystems of the VLS to reach the missile. The flow
of return information and the processing involved is

also shown in the diagram.

The information in the WCS subsystem section of the

system CFFD shows the particular subsystem CFFD
number that sends or receives the data from that

system CFFD. Critical timing requirements are noted
where flow of information has to occur within a

particular window of time.

Subsystem CFFDs

The WCS subsystem CFFDs depict the flow of data
and control through the hierarchical structure of the

software. Each WCS CFFD is broken into layers of

subflows, where the lowest level subflow represents
the path and actions taken during one pass of a task.
Each subflow of a CFFD culminates in a variable(s)

being set or a message being transmitted that is a step

toward the accomplishment of the critical action
associated with the critical factor. Variables being set

to the values indicated by the subflow appear as input
conditions in other subflows, in the same or other

CFFDs. Each page of the subflow shows the
routines, calling structure, and variables used within a

single task.

The Boolean events leading into the AND gate of a

routine identify a specific path in the routine that is
executed in this critical factor. This path may also

appear in other pages of a CFFD or in other CFFDs.
Other paths in a routine often occur in the same or
other CTFDs.

Figures 2a-2d show the CFFD for the processing to

grant permission to fire for a plan, which is a specific

step in the launch sequence. The Permission To Fire
CFFD has only one layer of subflows. Granting

Functional Flows in IV&V 3



permission to fire involves the four basic steps listed
below.

I. determining that the plan has advanced to the
proper state to place an operator prompt on a

queue
2. displaying the prompt
3. recognizing that the operator has responded

properly to the prompt
4. setting the state of the plan to indicate that

permission has been granted.

This processing requires action in four major task
threads, which results in the CFFD having four pages.

Figure 2a shows the processing within Task ELSST

for the Request Permission to Fire Prompt to be

placed on the prompt queue. Figure 2b shows the
task which acts upon the operator request to display

the prompt. Figure 2c shows the display processing
within the third task when the operator turns the

Permission to Fire Key. Figure 2d shows the final
processing within a subsequent pass of Task ELSST
to set the state of the subsystem to indicate that

permission has been granted for the plan.

The Boolean combination of the variables evaluated

in the critical path are shown on the flow, as well as
the values to which critical variables are set. Each

page results in the setting of a critical variable or the
output of a message, and this result is used to name

the individual pages of the subflow. The code
variable name, the value assigned or being evaluated,

and a description of the condition holding when the
variable assumes that value are all listed on the

subflow for both assignments and evaluations. Great

pains are taken to ensure consistency in the

descriptions across all the CFFDs, so that identical
conditions are described using the same phrasing.
This allows text searches to be used to locate areas of

interest.

CONSTRUCTION PROCESS AND USE

Some CFFDs exist for the previous version of the

system and the subsystem. The system diagrams and
some subsystem diagrams are assigned to analysts

already experienced in those portions of the ISNSA.
These analysts are able to use the previous diagrams
as baselines and update them for the differences that

occurred. These changes are known to these analysts

from the results of difference programs run on the

subsystem code, or from differences in the
Performance Specifications or Interface documents of

system components. The efforts of these analysts are

focused on updates first, and then on studying the
flows for any subtle impacts the changes might have

caused. The CFFDs become meaningful, visual tools

for determining the impact of change.

The ISNSA group also has several new analysts.

These analysts are not able to use the existing CFFDs
as baselines because they do not yet know the code

deeply enough to detect subtle problems that changes
might cause. The new analysts instead start

constructing the CFFDs from the beginning. These
analysts study the assigned code, create a basic

CFFD, and then compare their diagram to the
baseline CFFDs and known difference listings as the

experienced analysts do. Creating completely new

CFFDs when old CFFDs already exist may seem to
be duplicative work. However, the analysts find that
this one-time investment serves them well in better

understanding the flows of the program and in

helping them to detect the more subtle errors. The
actual time spent in this integrated process is

comparable to the stun of a "pure code study phase"

plus a "pure update CFFD" phase.

The TWS CFFDs are created from information in

interface control documents and from operational
flow diagrams in the high-level system specifications.

The WCS CFFDs are based on code analysis and the
use of a flow chart generator. Each Boolean

combination of variables feeding into a module AND

gate represents a particular path through the
module(s). The represented path terminates in the
call to the next module or in the statements that result

in the output indicated by the CFFD.

The analysts use the CFFDs not only to vexify the
basic processing of each critical factor, but also to

investigate error processing and off-nominal cases.
By examining each variable involved in the CFFD,

the analyst can consider the possibility of conditions
that could affect the value of that variable. The

CFFDs also present a visual representation of the

processing by which the analyst can consider the
completeness of _ flow, and if all cases within

each situation are handled by the software.

The CFFDs assist in communicating about the

processing of the critical factors to other ISNSA
analysts and to ISNSA management. The CFFDs are
used in determining the impact of mistakes in one

area of the software upon other critical processing.
The CFFDs also serve as the basis for formal

inspections by the ISNSA team.

Functional Flows in IV&V 4



Inadditionto aiding the analysis of each area by the

analyst assigned responsibility to that area,
construction of the CFFDs provides a framework for

interaction. The analysts have to cooperate with each
other to develop a set of CFFDs that are complete and

consistent. Many of the CFFDs involve multiple
tasks that may be assigned to different analysts, and

these analysts have to work together to construct the

complete CFFD. This cooperation provides a basis

for the analysts to learn about program areas outside
their assigned responsibility.

COMPARISON WITH OTHER METHODS

Functional flows have aspects that are common with

other analysis methods used in software safety,

including fault trees, event trees, and failure mode
and effects analysis. Functional flows also share

some commonalties with testing approaches such as
operational profiles and user scenarios. This section
discusses the similarities, differences, and

relationships between functional flows and these
other methods.

Fault trees are frequently used for system safety

analysis, and show the combination of events that
could cause or contribute to the occurrence of an

undesirable state. Fault trees are depicted using a tree
structure with AND and OR nodes, and usually
contain hardware conditions, software conditions and

human interactions. A fault tree is the logical

representation of the relationship of primary events
that lead to a specified undesirable event. The

construction of the fault tree is top-down, in that the
undesirable event is the root of the tree and the

logical combination of subevents are used to map out

the tree until the basic initiating events are reached.

Event trees appear very similar to fault trees, and may
use the same representations. However, event trees

are used to identify the effects of an event instead of
the causes. Rather than starting from a particular

system event and working backwards to the causes,

an event tree traces a primary event forward in order
to determine the consequences of the event. Event

tree analysis is inductive as opposed to the deductive
fault tree analysis s.

Failure Mode Effects Analysis (FMEA) is an

inductive method used to systematically consider the
effects of all failure modes. The system is

decomposed into its component parts, each of which
has known or anticipated failure modes. _h failure

mode is analyzed, with an examination of the cause,

effect, severity, probability and prevention or
mitigation of each failure mode.

Fault tree analysis, event tree analysis and FMEA are

all methods of software safety ana_is, as is
functional flow analysis. However, due to its focus

on functional processing rather than strictly on the
cause or effect of a fault, functional flows can be

extended beyond software safety into the more
general area of software assurance . The derivation

of the CFFDs tends to include both top-down and
bottom-up techniques; the critical s)smm action

accomplished by the critical factor is the top of the
functional flow, but the functional flow is generated

by examining the processing of the various software

components. While event trees have a mndency to
expand rapidly as combinations of events cause
different effects, the critical factor serves to constrain

the scope of the functional flow.

Fault trees and event trees are both used to show

system states or conditions that are the cause or effect

of a particular system state. The emphasis of fault
trees and event trees is on determining the states that

can occur. Functional flows emphasize the process of
achieving various states of the system, showing

alternate execution paths and control flow's that result
in the same state. This additional information is

useful if the analysis is being conducted to provide

assurance that the software is performing correctly
and not just to determine and avoid fault conditions.

Functional flows are not directly related to FMEA
tables, but could prove useful in the analysis of

failure modes. Functional flows provide insights into

relationships between software components that could
assist in determining the causes and effects of a given
fault mode. Since the functional flows are

constructed for critical processing, this would also

assist in determining the severity of a particular fault.

BENEFITS

The ISNSA effort gains several benefits from the use

of functional flows as a basis for anal)sis. These
benefits are both technical and organizational in

nature, and are described in the paragraphs below.

1) Perspective

A stated objective in using the CFFDs as a basis for
IV&V analysis is to provide the analysts a

Functional Flows in IV&V 5



perspective that differs from the perspective of the
developer. The perspective provided by the CFFDs

allows the ISNSA analysts to consider situations and

abnormal conditions that are not easily seen during
the construction of the software. An example of this

is the discovery of a path in which a single variable

was responsible for indicating that a critical factor
had been completed, thus allowing the next critical

factor to begin. This violated the nuclear safety
constraint that no single fault be allowed to initiate a
critical factor.

The perspective provided by the CFFDs is not simply

different from that of the developer, but is useful to

the IV&V analysts in understanding the software.
The CFFDs give the analysts insight into the internal

functioning of a module, into the overall flow, and in

particular to interfaces between modules. In addition,
this insight into the flow of the program is from an

operator's standpoint (closer to the critical factors)
rather than from a pure hierarchical (code study) or

requirements based (specification study) view.

2) High-Risk Focus

ISNSA attempts to focus its efforts on that portion of
the software that deals directly with the control of

nuclear weapons. (The ISNSA team also recognizes
that seemingly unrelated sections of the software can

have an impact on nuclear safety, and that some
minimal examination is necessary for all software in
the system1.) The CFFDs provide a natural structure

for giving priority to the software that is involved

with the critical factors and is therefore most directly

related to nuclear safety.

Although most systems do not have a predetermined

set of"critical factors," many systems do have a set of

actions that are critical to the proper operation of the
system. The system components that implement and
control those actions serve as the critical factors for

that system, and the software components involved in
those critical factors are the critical functions for that

system. This concept can be applied not only to
safety applications outside of nuclear weapon control
systems, but to non-safety applications as well. 2

3) Test Cases

Each functional flow depicts one or more operational

scenarios for the system. These scenarios serve as a
basis for writing test cases dealing with critical

processing. Since many of the safety requirements

also deal with specific critical factors, the test cases

are appropriate for ISNSA. Having the flows in a
graphical format also allows the analysts to perform

pen and paper simulations of the processing using a

range of inputs. The ability to consider a range of
inputs is also useful in determining the exact values to
be used as inputs for testing, so that extremes and

problematic inputs can be used.

4) Cross-Training

The primary assignment given to each analyst
generally leads to the analyst being responsible for a
software module that consists of one or more tasks

and the calling slructure beneath the tasks. The WCS

subsystem CFFDs provide a forum for the analysts to
consider and discuss interactions between the

modules. This collaboration allows each analyst to
learn about the structure and function of software

outside their primary area of responsibility, and to so

gain a better understanding of the program as a
whole. This whole-program view, linked to a

manageable amount of analyst responsibility, allows
analysts to enxfsion problems that could no_ be seen

_aSen considering only a portion of the software. One
example of this was a variable set in one section of

the software after verification that the proper
conditions were satisfied, but then changed in another
section without reverification to ensure that the new

setting met all required conditions.

CONCLUSION

The use of CFFDs proved valuable as one of the

methods used during ISNSA. By following a thread
through multiple modules, this technique allowed the
analysts to consider situations and combinations of

events that would not normally be considered during
the development of the software. This method was

one of several used in ISNSA to focus the analysis on

areas of high-criticality. In addition, the CFFDs
provided a strut-rare by which the analysts could learn
about and discuss interactions and interfaces with
software outside their immediate area of

responsibility.

Although this method was used specifically within

ISNSA, functional flows could be applied to both
other areas of software safety analysis and to software

assurance in general. The functional flows provide a
framework for assurance activities to focus on the

areas of software that perform activities important to
the system user.

Functional Flows in IV&V 6
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